معرفی شرکت ها


AllanTools-2019.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Allan deviation and related time/frequency statistics
ویژگی مقدار
سیستم عامل -
نام فایل AllanTools-2019.9
نام AllanTools
نسخه کتابخانه 2019.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Anders E. E. Wallin
ایمیل نویسنده anders.e.e.wallin@gmail.com
آدرس صفحه اصلی https://github.com/aewallin/allantools
آدرس اینترنتی https://pypi.org/project/AllanTools/
مجوز LGPLv3+
AllanTools ========== .. image:: https://badge.fury.io/py/AllanTools.svg :target: https://badge.fury.io/py/AllanTools .. image:: https://travis-ci.org/aewallin/allantools.svg?branch=master :target: https://travis-ci.org/aewallin/allantools .. image:: http://readthedocs.org/projects/allantools/badge/?version=latest :target: http://allantools.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://coveralls.io/repos/github/aewallin/allantools/badge.svg?branch=master :target: https://coveralls.io/github/aewallin/allantools?branch=master .. image:: https://app.fossa.io/api/projects/git%2Bgithub.com%2Faewallin%2Fallantools.svg?type=shield :target: https://app.fossa.io/projects/git%2Bgithub.com%2Faewallin%2Fallantools?ref=badge_shield A python library for calculating Allan deviation and related time & frequency statistics. `LGPL v3+ license <https://www.gnu.org/licenses/lgpl.html>`_. * Development at https://github.com/aewallin/allantools * Installation package at https://pypi.python.org/pypi/AllanTools * Discussion group at https://groups.google.com/d/forum/allantools * Documentation available at https://allantools.readthedocs.org Input data should be evenly spaced observations of either fractional frequency, or phase in seconds. Deviations are calculated for given tau values in seconds. ===================================== ==================================================== Function Description ===================================== ==================================================== ``adev()`` Allan deviation ``oadev()`` Overlapping Allan deviation ``mdev()`` Modified Allan deviation ``tdev()`` Time deviation ``hdev()`` Hadamard deviation ``ohdev()`` Overlapping Hadamard deviation ``totdev()`` Total deviation ``mtotdev()`` Modified total deviation ``ttotdev()`` Time total deviation ``htotdev()`` Hadamard total deviation ``theo1()`` Theo1 deviation ``mtie()`` Maximum Time Interval Error ``tierms()`` Time Interval Error RMS ``gradev()`` Gap resistant overlapping Allan deviation ===================================== ==================================================== Noise generators for creating synthetic datasets are also included: * violet noise with f^2 PSD * white noise with f^0 PSD * pink noise with f^-1 PSD * Brownian or random walk noise with f^-2 PSD More details on available statistics and noise generators : `full list of available functions <functions.html>`_ see /tests for tests that compare allantools output to other (e.g. Stable32) programs. More test data, benchmarks, ipython notebooks, and comparisons to known-good algorithms are welcome! Installation ------------ Install from pypi:: pip install allantools Latest version + examples, tests, test data, iPython notebooks : clone from github, then install :: python setup.py install (see `python setup.py --help install` for install options) These commands should be run as root for system-wide installation, or you can use the `--user` option to install for your account only. Exact command names may vary depending on your OS / package manager / target python version. Basic usage ----------- Minimal example, phase data ~~~~~~~~~~~~~~~~~~~~~~~~~~~ We can call allantools with only one parameter - an array of phase data. This is suitable for time-interval measurements at 1 Hz, for example from a time-interval-counter measuring the 1PPS output of two clocks. :: >>> import allantools >>> x = allantools.noise.white(10000) # Generate some phase data, in seconds. >>> (taus, adevs, errors, ns) = allantools.oadev(x) when only one input parameter is given, phase data in seconds is assumed when no rate parameter is given, rate=1.0 is the default when no taus parameter is given, taus='octave' is the default Frequency data example ~~~~~~~~~~~~~~~~~~~~~~ Note that allantools assumes non-dimensional frequency data input. Normalization, by e.g. dividing all data points with the average frequency, is left to the user. :: >>> import allantools >>> import pylab as plt >>> import numpy as np >>> t = np.logspace(0, 3, 50) # tau values from 1 to 1000 >>> y = allantools.noise.white(10000) # Generate some frequency data >>> r = 12.3 # sample rate in Hz of the input data >>> (t2, ad, ade, adn) = allantools.oadev(y, rate=r, data_type="freq", taus=t) # Compute the overlapping ADEV >>> fig = plt.loglog(t2, ad) # Plot the results >>> # plt.show() *New in 2016.11* : simple top-level `API <api.html>`_, using dedicated classes for data handling and plotting. :: import allantools # https://github.com/aewallin/allantools/ import numpy as np # Compute a deviation using the Dataset class a = allantools.Dataset(data=np.random.rand(1000)) a.compute("mdev") # New in 2019.7 : write results to file a.write_result("output.dat") # Plot it using the Plot class b = allantools.Plot() # New in 2019.7 : additional keyword arguments are passed to # matplotlib.pyplot.plot() b.plot(a, errorbars=True, grid=True) # You can override defaults before "show" if needed b.ax.set_xlabel("Tau (s)") b.show() Jupyter notebooks with examples ------------------------------- Jupyter notebooks are interactive python scripts, embedded in a browser, allowing you to manipulate data and display plots like easily. For guidance on installing jupyter, please refer to https://jupyter.org/install. See /examples for some examples in notebook format. github formats the notebooks into nice web-pages, for example * https://github.com/aewallin/allantools/blob/master/examples/noise-color-demo.ipynb * https://github.com/aewallin/allantools/blob/master/examples/three-cornered-hat-demo.ipynb Authors ------- * Anders E.E. Wallin, anders.e.e.wallin "at" gmail.com , https://github.com/aewallin * Danny Price, https://github.com/telegraphic * Cantwell G. Carson, carsonc "at" gmail.com * Frédéric Meynadier, https://github.com/fmeynadier * Yan Xie, https://github.com/yxie-git * Erik Benkler, https://github.com/EBenkler


نحوه نصب


نصب پکیج whl AllanTools-2019.9:

    pip install AllanTools-2019.9.whl


نصب پکیج tar.gz AllanTools-2019.9:

    pip install AllanTools-2019.9.tar.gz