معرفی شرکت ها


AdvancedAnalytics-1.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python support for 'The Art and Science of Data Analytics'
ویژگی مقدار
سیستم عامل -
نام فایل AdvancedAnalytics-1.9
نام AdvancedAnalytics
نسخه کتابخانه 1.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Edward R Jones
ایمیل نویسنده ejones@tamu.edu
آدرس صفحه اصلی https://github.com/tandonneur/AdvancedAnalytics
آدرس اینترنتی https://pypi.org/project/AdvancedAnalytics/
مجوز -
AdvancedAnalytics =================== A collection of python modules, classes and methods for simplifying the use of machine learning solutions. **AdvancedAnalytics** provides easy access to advanced tools in **Sci-Learn**, **NLTK** and other machine learning packages. **AdvancedAnalytics** was developed to simplify learning python from the book *The Art and Science of Data Analytics*. Description =========== From a high level view, building machine learning applications typically proceeds through three stages: 1. Data Preprocessing 2. Modeling or Analytics 3. Postprocessing The classes and methods in **AdvancedAnalytics** primarily support the first and last stages of machine learning applications. Data scientists report they spend 80% of their total effort in first and last stages. The first stage, *data preprocessing*, is concerned with preparing the data for analysis. This includes: 1. identifying and correcting outliers, 2. imputing missing values, and 3. encoding data. The last stage, *solution postprocessing*, involves developing graphic summaries of the solution, and metrics for evaluating the quality of the solution. Documentation and Examples ============================ The API and documentation for all classes and examples are available at https://github.com/tandonneur/AdvancedAnalytics/. Usage ===== Currently the most popular usage is for supporting solutions developed using these advanced machine learning packages: * Sci-Learn * StatsModels * NLTK The intention is to expand this list to other packages. This is a simple example for linear regression that uses the data map structure to preprocess data: .. code-block:: python from AdvancedAnalytics.ReplaceImputeEncode import DT from AdvancedAnalytics.ReplaceImputeEncode import ReplaceImputeEncode from AdvancedAnalytics.Tree import tree_regressor from sklearn.tree import DecisionTreeRegressor, export_graphviz # Data Map Using DT, Data Types data_map = { "Salary": [DT.Interval, (20000.0, 2000000.0)], "Department": [DT.Nominal, ("HR", "Sales", "Marketing")] "Classification": [DT.Nominal, (1, 2, 3, 4, 5)] "Years": [DT.Interval, (18, 60)] } # Preprocess data from data frame df rie = ReplaceImputeEncode(data_map=data_map, interval_scaling=None, nominal_encoding= "SAS", drop=True) encoded_df = rie.fit_transform(df) y = encoded_df["Salary"] X = encoded_df.drop("Salary", axis=1) dt = DecisionTreeRegressor(criterion= "gini", max_depth=4, min_samples_split=5, min_samples_leaf=5) dt = dt.fit(X,y) tree_regressor.display_importance(dt, encoded_df.columns) tree_regressor.display_metrics(dt, X, y) Current Modules and Classes ============================= ReplaceImputeEncode Classes for Data Preprocessing * DT defines new data types used in the data dictionary * ReplaceImputeEncode a class for data preprocessing Regression Classes for Linear and Logistic Regression * linreg support for linear regressino * logreg support for logistic regression * stepwise a variable selection class Tree Classes for Decision Tree Solutions * tree_regressor support for regressor decision trees * tree_classifier support for classification decision trees Forest Classes for Random Forests * forest_regressor support for regressor random forests * forest_classifier support for classification random forests NeuralNetwork Classes for Neural Networks * nn_regressor support for regressor neural networks * nn_classifier support for classification neural networks Text Classes for Text Analytics * text_analysis support for topic analysis * text_plot for word clouds * sentiment_analysis support for sentiment analysis Internet Classes for Internet Applications * scrape support for web scrapping * metrics a class for solution metrics Installation and Dependencies ============================= **AdvancedAnalytics** is designed to work on any operating system running python 3. It can be installed using **pip** or **conda**. .. code-block:: python pip install AdvancedAnalytics # or conda install -c dr.jones AdvancedAnalytics General Dependencies There are dependencies. Most classes import one or more modules from **Sci-Learn**, referenced as *sklearn* in module imports, and **StatsModels**. These are both installed with the current version of **anaconda**. Installed with AdvancedAnalytics Most packages used by **AdvancedAnalytics** are automatically installed with its installation. These consist of the following packages. * statsmodels * scikit-learn * scikit-image * nltk * pydotplus Other Dependencies The *Tree* and *Forest* modules plot decision trees and importance metrics using **pydotplus** and the **graphviz** packages. These should also be automatically installed with **AdvancedAnalytics**. However, the **graphviz** install is sometimes not fully complete with the conda install. It may require an additional pip install. .. code-block:: python pip install graphviz Text Analytics Dependencies The *TextAnalytics* module uses the **NLTK**, **Sci-Learn**, and **wordcloud** packages. Usually these are also automatically installed automatically with **AdvancedAnalytics**. You can verify they are installed using the following commands. .. code-block:: python conda list nltk conda list sci-learn conda list wordcloud However, when the **NLTK** package is installed, it does not install the data used by the package. In order to load the **NLTK** data run the following code once before using the *TextAnalytics* module. .. code-block:: python #The following NLTK commands should be run once nltk.download("punkt") nltk.download("averaged_preceptron_tagger") nltk.download("stopwords") nltk.download("wordnet") The **wordcloud** package also uses a little know package **tinysegmenter** version 0.3. Run the following code to ensure it is installed. .. code-block:: python conda install -c conda-forge tinysegmenter==0.3 # or pip install tinysegmenter==0.3 Internet Dependencies The *Internet* module contains a class *scrape* which has some functions for scraping newsfeeds. Some of these use the **newspaper3k** package. It should be automatically installed with **AdvancedAnalytics**. However, it also uses the package **newsapi-python**, which is not automatically installed. If you intended to use this news scraping scraping tool, it is necessary to install the package using the following code: .. code-block:: python conda install -c conda-forge newsapi # or pip install newsapi In addition, the newsapi service is sponsored by a commercial company www.newsapi.com. You will need to register with them to obtain an *API* key required to access this service. This is free of charge for developers, but there is a fee if *newsapi* is used to broadcast news with an application or at a website. Code of Conduct --------------- Everyone interacting in the AdvancedAnalytics project's codebases, issue trackers, chat rooms, and mailing lists is expected to follow the PyPA Code of Conduct: https://www.pypa.io/en/latest/code-of-conduct/ .


نیازمندی

مقدار نام
- scikit-learn
- scikit-image
- statsmodels
- nltk
- pydotplus


نحوه نصب


نصب پکیج whl AdvancedAnalytics-1.9:

    pip install AdvancedAnalytics-1.9.whl


نصب پکیج tar.gz AdvancedAnalytics-1.9:

    pip install AdvancedAnalytics-1.9.tar.gz