<!--
* @Description:
* @Author: SongJ
* @Date: 2020-12-29 13:52:28
* @LastEditTime: 2021-04-12 10:44:01
* @LastEditors: SongJ
-->
## 自适应密度峰值树聚类(Adaptive Density Peak Tree Clustering)
本算法是在快速搜索与发现密度峰值聚类算法(Clustering by fast search and find of density peaks)CFSFDP的基础上进行改进的成果,主要解决的问题有:
- 手动选择聚类中心
- 单簇多密度峰值导致类簇误分
- 面向时空数据聚类时,无法顾及时空耦合
### 原理:
通过CFSFDP算法的核心概念:局部密度和斥群值,构建密度峰值树,通过直达点、连通点和切割点分离子树,达到类簇划分的目的。
<img src="https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210616098.png" alt="image-20210409210616098" style="zoom: 80%;" />


### 使用方法:
#### 1. 安装:
```python
pip install ADPTC-LIB
```
#### 2. 空间数据聚类:
```python
import numpy as np
from ADPTC_LIB.cluster import ADPTC
from ADPTC_LIB import visual
X = np.loadtxt(r"../test_data/Aggregation.txt", delimiter="\t")
X = X[:,[0,1]]
atdpc_obj = ADPTC(X)
atdpc_obj.clustering(2)
visual.show_result(atdpc_obj.labels,X,np.array(list(atdpc_obj.core_points)))
```

#### 3. 空间属性数据聚类:
```python
from ADPTC_LIB.cluster import ADPTC
from ADPTC_LIB import visual
import xarray as xr
import os
import numpy as np
filePath = os.path.join(r'Z:\regions_daily_010deg\\05\\2013.nc')
dataset = xr.open_dataset(filePath)
pre_ds = dataset['precipitation']
lon = pre_ds.lon
lat = pre_ds.lat
lon_range = lon[(lon>-30)&(lon<70)]
lat_range = lat[(lat>30)&(lat<90)]
var = pre_ds.sel(lon=lon_range,lat = lat_range)
var = var.resample(time='1M',skipna=True).sum()
var_t = var.sel(time=var.time[0])
reduced = var_t.coarsen(lon=5).mean().coarsen(lat=5).mean()
data_nc = np.array(reduced)
spatial_eps=4
attr_eps=8
density_metric='gauss'
spre = ADPTC(data_nc)
spre.spacial_clustering_raster(spatial_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
visual.show_result_2d(reduced,spre.labels)
```

#### 4.时空属性聚类:
```python
from ADPTC_LIB.cluster import ADPTC
from ADPTC_LIB import visual
import xarray as xr
import numpy as np
temp= xr.open_dataset(r'Z:\MSWX\temp\2020.nc')
temp_2020 = temp['air_temperature']
lon = temp_2020.lon
lat = temp_2020.lat
time = temp_2020.time
lon_range = lon[(lon>70)&(lon<140)]
lat_range = lat[(lat>15)&(lat<55)]
var = temp_2020.sel(lon=lon_range,lat = lat_range)
reduced = var.coarsen(lon=5).mean().coarsen(lat=5).mean()
data_nc = np.array(reduced)
s_eps = 5
t_eps = 1
attr_eps = 2.5
density_metric='gauss'
spre = ADPTC(data_nc)
spre.st_clustering_raster(s_eps,t_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
visual.show_result_3d(reduced,spre,[70, 140, 15, 50],[0,12],21)
```
