معرفی شرکت ها


ACTIONet-0.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

ACTIONet single-cell analysis framework
ویژگی مقدار
سیستم عامل -
نام فایل ACTIONet-0.3.0
نام ACTIONet
نسخه کتابخانه 0.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Shahin Mohammadi
ایمیل نویسنده shahin.mohammadi@gmail.com
آدرس صفحه اصلی https://github.com/shmohammadi86/ACTIONet
آدرس اینترنتی https://pypi.org/project/ACTIONet/
مجوز -
# Installation ### Setting Up the Environment (Preinstallation) **For Linux Users** Verify that the cmake version you are using is >=3.19. For the optimal performance on Intel-based architectures, installing [Intel Math Kernel Library (MKL)](https://software.intel.com/content/www/us/en/develop/articles/intel-math-kernel-library-intel-mkl-2020-install-guide.html) is **highly** recommended. After installing, make sure `MKLROOT` is defined by running the [setvars](https://software.intel.com/content/www/us/en/develop/documentation/using-configuration-file-for-setvars-sh/top.html) script. **Install library dependencies** To install the `ACTIONet` dependencie on debian-based linux machines, run: ```bash sudo apt-get install libhdf5-dev libsuitesparse-dev libnss3 xvfb libblas-dev liblapack-dev ``` For Mac-based systems, you can use [brew](https://brew.sh/) instead: ```bash brew install hdf5 suite-sparse c-blosc blas lapack ``` ### Installing ACTIONet Python Package Use `pip` to install ACTIONet directly from this repository: ```bash pip install git+https://github.com/shmohammadi86/ACTIONet@python-devel ``` To install from source: ``` git clone --recurse-submodules https://github.com/shmohammadi86/ACTIONet.git make install ``` # Running ACTIONet **Note** If you are using `MKL`, make sure to properly [set the number of threads](https://software.intel.com/content/www/us/en/develop/documentation/mkl-macos-developer-guide/top/managing-performance-and-memory/improving-performance-with-threading/techniques-to-set-the-number-of-threads.html) used prior to running `ACTIONet`. ## Example Run Here is a simple example to get you started: ```python import urllib.request import ACTIONet as an import scanpy as sc # Download example dataset from the 10X Genomics website opener = urllib.request.build_opener() opener.addheaders = [('User-agent', 'Mozilla/5.0')] urllib.request.install_opener(opener) urllib.request.urlretrieve('http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_filtered_feature_bc_matrix.h5', 'pbmc_10k_v3.h5') # Read and filter the data adata = sc.read_10x_h5('pbmc_10k_v3.h5') adata.var_names_make_unique(join='.') an.pp.filter_adata(adata, min_cells_per_feature=0.01, min_features_per_cell=1000) sc.pp.normalize_total(adata) sc.pp.log1p(adata) # Run ACTIONet an.pp.reduce_kernel(adata) an.run_ACTIONet(adata) # Annotate cell-types marker_genes, directions, names = an.tl.load_markers('PBMC_Monaco2019_12celltypes') cell_labels, confidences, Z = an.tl.annotate_cells_using_markers(adata, marker_genes, directions, names) adata.obs['celltypes'] = cell_labels # Visualize output an.pl.plot_ACTIONet(adata, 'celltypes', transparency_key='node_centrality') # Export results adata.write('pbmc_10k_v3.h5ad') ``` ## Visualizing results using cellxgene The output of ACTIONet in the python implementation is internally stored as as `AnnData` object, and R `ACE` objects can be imported from/exported to `AnnData` using functions `AnnData2ACE()` and `ACE2AnnData()` functions, respectively. `AnnData` objects can be directly loaded into [cellxgene](https://github.com/chanzuckerberg/cellxgene) package, an open-source viewer for interactive single-cell data visualization. `cellxgene` can be installed as: ```bash pip install cellxgene ``` Then to visualize the results of ACTIONet, run: ```bash cellxgene launch pbmc_10k_v3.h5ad ``` where *pbmc_10k_v3.h5ad* is the name of the file we exported using `adata.write()` function. # Additional tutorials You can access ACTIONet tutorials from: 1. [ACTIONet framework at a glance (human PBMC 3k dataset)](http://compbio.mit.edu/ACTIONet/tutorials/mini_intro.html) 2. [Introduction to the ACTIONet framework (human PBMC Granja et al. dataset)](http://compbio.mit.edu/ACTIONet/tutorials/intro.html) 3. [Introduction to cluster-centric analysis using the ACTIONet framework](http://compbio.mit.edu/ACTIONet/tutorials/clustering.html) 4. [To batch correct or not to batch correct, that is the question!](http://compbio.mit.edu/ACTIONet/tutorials/batch.html) 5. [PortingData: Import/export options in the ACTIONet framework](http://compbio.mit.edu/ACTIONet/tutorials/porting_data.html) 6. [Interactive visualization, annotation, and exploration](http://compbio.mit.edu/ACTIONet/tutorials/annotation.html) 7. [Constructing cell-type/cell-state-specific networks using SCINET](http://compbio.mit.edu/ACTIONet/tutorials/scinet.html) You can also find a [step-by-step guide](http://compbio.mit.edu/ACTIONet/tutorials/guide.html) to learning the core functionalities of the ACTIONet framework.


نیازمندی

مقدار نام
- cmake
==0.8.0 anndata
==1.9.1 scanpy
>=3.0 h5py
>=0.7.3 adjustText
>=7.0.1 natsort
>=1.19.2 numpy
>=1.1.5 pandas
>=1.5.2 scipy
>=3.7.4 typing-extensions
- plotly
- seaborn
- orca
- sphinx
- nbsphinx
- mypy
- harmonypy


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl ACTIONet-0.3.0:

    pip install ACTIONet-0.3.0.whl


نصب پکیج tar.gz ACTIONet-0.3.0:

    pip install ACTIONet-0.3.0.tar.gz