معرفی شرکت ها


ACSConv-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

[IEEE JBHI] Reinventing 2D Convolutions for 3D Images
ویژگی مقدار
سیستم عامل -
نام فایل ACSConv-0.1.1
نام ACSConv
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jiancheng Yang and Xiaoyang Huang
ایمیل نویسنده jekyll4168@sjtu.edu.cn
آدرس صفحه اصلی https://github.com/M3DV/ACSConv
آدرس اینترنتی https://pypi.org/project/ACSConv/
مجوز Apache-2.0 License
# ACSConv Reinventing 2D Convolutions for 3D Images ([arXiv](https://arxiv.org/abs/1911.10477)) IEEE Journal of Biomedical and Health Informatics (IEEE JBHI), 2021 ([DOI](http://doi.org/10.1109/JBHI.2021.3049452)) **News**: - 2022.01.26 - ACS [ConvNeXt](acsconv/models/convnext.py) supported. - 2021.12.17 - torch 1.10 supported & pip installation supported. - 2021.4.19 - torch 1.8 supported. ## Key contributions * ACS convolution aims at a **plug-and-play replacement** of standard 3D convolution, for 3D medical images. * ACS convolution enables **2D-to-3D transfer learning**, which consistently provides significant performance boost in our experiments. * Even without pretraining, ACS convolution is **comparable to or even better than** 3D convolution, with **smaller model size** and **less computation**. ## Package Installation If you want to use this class, you have two options: A) Install ACSConv as a standard Python package from PyPI: ```bash pip install ACSConv ``` B) Simply copy and paste it in your project; You could run the `test.py` to validate the installation. (If you want to test the validity of pip installation, please move this `test.py` file outside of this git project directory, otherwise it is testing the code inside the project instead of pip installation.) ## Requirements ### PyTorch requirements ```python torch>=1.0.0 and torch<=1.10.0 ``` You can install it on the [official homepage](https://pytorch.org/docs/stable/index.html). ### Other requirements All libraries needed to run the included experiments (base requirements included). ```python fire jupyterlab matplotlib pandas tqdm sklearn tensorboardx ``` ## Code structure * ``acsconv`` the core implementation of ACS convolution, including the operators, models, and 2D-to-3D/ACS model converters. * ``operators``: include ACSConv, SoftACSConv and Conv2_5d. * ``converters``: include converters which convert 2D models to 3d/ACS/Conv2_5d counterparts. * ``models``: Native ACS models. * ``experiments`` the scripts to run experiments. * ``mylib``: the lib for running the experiments. * ``poc``: the scripts to run proof-of-concept experiments. * ``lidc``: the scripts to run LIDC-IDRI experiments. ## Convert a 2D model into 3D with a single line of code ```python import torch from torchvision.models import resnet18 from acsconv.converters import ACSConverter # model_2d is a standard pytorch 2D model model_2d = resnet18(pretrained=True) B, C_in, H, W = (1, 3, 64, 64) input_2d = torch.rand(B, C_in, H, W) output_2d = model_2d(input_2d) model_3d = ACSConverter(model_2d) # once converted, model_3d is using ACSConv and capable of processing 3D volumes. B, C_in, D, H, W = (1, 3, 64, 64, 64) input_3d = torch.rand(B, C_in, D, H, W) output_3d = model_3d(input_3d) ``` ## Usage of ACS operators ```python import torch from acsconv.operators import ACSConv, SoftACSConv B, C_in, D, H, W = (1, 3, 64, 64, 64) x = torch.rand(B, C_in, D, H, W) # ACSConv to process 3D volumnes conv = ACSConv(in_channels=3, out_channels=10, kernel_size=3, padding=1) out = conv(x) # SoftACSConv to process 3D volumnes conv = SoftACSConv(in_channels=3, out_channels=10, kernel_size=3, padding=1) out = conv(x) ``` ## Usage of native ACS models ```python import torch from acsconv.models.acsunet import ACSUNet unet_3d = ACSUNet(num_classes=3) B, C_in, D, H, W = (1, 1, 64, 64, 64) input_3d = torch.rand(B, C_in, D, H, W) output_3d = unet_3d(input_3d) ``` ## How to run the experiments * [Proof-of-Concept Segmentation](./experiments/poc/README.md) * [Lung Nodule Classification and Segmentation](./experiments/lidc/README.md) * ...


زبان مورد نیاز

مقدار نام
>=3.6.0 Python


نحوه نصب


نصب پکیج whl ACSConv-0.1.1:

    pip install ACSConv-0.1.1.whl


نصب پکیج tar.gz ACSConv-0.1.1:

    pip install ACSConv-0.1.1.tar.gz