معرفی شرکت ها


APIFlask-1.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A lightweight web API framework based on Flask and marshmallow-code projects.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل APIFlask-1.1.3
نام APIFlask
نسخه کتابخانه 1.1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Grey Li
ایمیل نویسنده withlihui@gmail.com
آدرس صفحه اصلی https://apiflask.com
آدرس اینترنتی https://pypi.org/project/APIFlask/
مجوز MIT
![](https://apiflask.com/_assets/apiflask-logo.png) # APIFlask [![Build status](https://github.com/apiflask/apiflask/workflows/build/badge.svg)](https://github.com/apiflask/apiflask/actions) [![codecov](https://codecov.io/gh/apiflask/apiflask/branch/main/graph/badge.svg?token=2CFPCZ1DMY)](https://codecov.io/gh/apiflask/apiflask) APIFlask is a lightweight Python web API framework based on [Flask](https://github.com/pallets/flask) and [marshmallow-code](https://github.com/marshmallow-code) projects. It's easy to use, highly customizable, ORM/ODM-agnostic, and 100% compatible with the Flask ecosystem. With APIFlask, you will have: - More sugars for view function (`@app.input()`, `@app.output()`, `@app.get()`, `@app.post()` and more) - Automatic request validation and deserialization - Automatic response formatting and serialization - Automatic [OpenAPI Specification](https://github.com/OAI/OpenAPI-Specification) (OAS, formerly Swagger Specification) document generation - Automatic interactive API documentation - API authentication support (with [Flask-HTTPAuth](https://github.com/miguelgrinberg/flask-httpauth)) - Automatic JSON response for HTTP errors ## Requirements - Python 3.7+ - Flask 1.1.0+ ## Installation For Linux and macOS: ```bash $ pip3 install apiflask ``` For Windows: ```bash > pip install apiflask ``` ## Links - Website: <https://apiflask.com> - Documentation: <https://apiflask.com/docs> - PyPI Releases: <https://pypi.python.org/pypi/APIFlask> - Change Log: <https://apiflask.com/changelog> - Source Code: <https://github.com/apiflask/apiflask> - Issue Tracker: <https://github.com/apiflask/apiflask/issues> - Discussion: <https://github.com/apiflask/apiflask/discussions> - Twitter: <https://twitter.com/apiflask> ## Example ```python from apiflask import APIFlask, Schema, abort from apiflask.fields import Integer, String from apiflask.validators import Length, OneOf app = APIFlask(__name__) pets = [ {'id': 0, 'name': 'Kitty', 'category': 'cat'}, {'id': 1, 'name': 'Coco', 'category': 'dog'} ] class PetIn(Schema): name = String(required=True, validate=Length(0, 10)) category = String(required=True, validate=OneOf(['dog', 'cat'])) class PetOut(Schema): id = Integer() name = String() category = String() @app.get('/') def say_hello(): # returning a dict or list equals to use jsonify() return {'message': 'Hello!'} @app.get('/pets/<int:pet_id>') @app.output(PetOut) def get_pet(pet_id): if pet_id > len(pets) - 1: abort(404) # you can also return an ORM/ODM model class instance directly # APIFlask will serialize the object into JSON format return pets[pet_id] @app.patch('/pets/<int:pet_id>') @app.input(PetIn(partial=True)) @app.output(PetOut) def update_pet(pet_id, data): # the validated and parsed input data will # be injected into the view function as a dict if pet_id > len(pets) - 1: abort(404) for attr, value in data.items(): pets[pet_id][attr] = value return pets[pet_id] ``` <details> <summary>You can also use class-based views based on <code>MethodView</code></summary> ```python from apiflask import APIFlask, Schema, abort from apiflask.fields import Integer, String from apiflask.validators import Length, OneOf from flask.views import MethodView app = APIFlask(__name__) pets = [ {'id': 0, 'name': 'Kitty', 'category': 'cat'}, {'id': 1, 'name': 'Coco', 'category': 'dog'} ] class PetIn(Schema): name = String(required=True, validate=Length(0, 10)) category = String(required=True, validate=OneOf(['dog', 'cat'])) class PetOut(Schema): id = Integer() name = String() category = String() class Hello(MethodView): # use HTTP method name as class method name def get(self): return {'message': 'Hello!'} class Pet(MethodView): @app.output(PetOut) def get(self, pet_id): """Get a pet""" if pet_id > len(pets) - 1: abort(404) return pets[pet_id] @app.input(PetIn(partial=True)) @app.output(PetOut) def patch(self, pet_id, data): """Update a pet""" if pet_id > len(pets) - 1: abort(404) for attr, value in data.items(): pets[pet_id][attr] = value return pets[pet_id] app.add_url_rule('/', view_func=Hello.as_view('hello')) app.add_url_rule('/pets/<int:pet_id>', view_func=Pet.as_view('pet')) ``` </details> <details> <summary>Or use <code>async def</code> with Flask 2.0</summary> ```bash $ pip install -U flask[async] ``` ```python import asyncio from apiflask import APIFlask app = APIFlask(__name__) @app.get('/') async def say_hello(): await asyncio.sleep(1) return {'message': 'Hello!'} ``` See <em><a href="https://flask.palletsprojects.com/async-await">Using async and await</a></em> for the details of the async support in Flask 2.0. </details> Save this as `app.py`, then run it with : ```bash $ flask run --reload ``` Now visit the interactive API documentation (Swagger UI) at <http://localhost:5000/docs>: ![](https://apiflask.com/_assets/swagger-ui.png) Or you can change the API documentation UI when creating the APIFlask instance with the `docs_ui` parameter: ```py app = APIFlask(__name__, docs_ui='redoc') ``` Now <http://localhost:5000/docs> will render the API documentation with Redoc. Supported `docs_ui` values (UI libraries) include: - `swagger-ui` (default value): [Swagger UI](https://github.com/swagger-api/swagger-ui) - `redoc`: [Redoc](https://github.com/Redocly/redoc) - `elements`: [Elements](https://github.com/stoplightio/elements) - `rapidoc`: [RapiDoc](https://github.com/rapi-doc/RapiDoc) - `rapipdf`: [RapiPDF](https://github.com/mrin9/RapiPdf) The auto-generated OpenAPI spec file is available at <http://localhost:5000/openapi.json>. You can also get the spec with [the `flask spec` command](https://apiflask.com/openapi/#the-flask-spec-command): ```bash $ flask spec ``` For some complete examples, see [/examples](https://github.com/apiflask/apiflask/tree/main/examples). ## Relationship with Flask APIFlask is a thin wrapper on top of Flask. You only need to remember the following differences (see *[Migrating from Flask](https://apiflask.com/migrating)* for more details): - When creating an application instance, use `APIFlask` instead of `Flask`. - When creating a blueprint instance, use `APIBlueprint` instead of `Blueprint`. - The `abort()` function from APIFlask (`apiflask.abort`) returns JSON error response. For a minimal Flask application: ```python from flask import Flask, request, escape app = Flask(__name__) @app.route('/') def hello(): name = request.args.get('name', 'Human') return f'Hello, {escape(name)}' ``` Now change to APIFlask: ```python from apiflask import APIFlask # step one from flask import request, escape app = APIFlask(__name__) # step two @app.route('/') def hello(): name = request.args.get('name', 'Human') return f'Hello, {escape(name)}' ``` In a word, to make Web API development in Flask more easily, APIFlask provides `APIFlask` and `APIBlueprint` to extend Flask's `Flask` and `Blueprint` objects and it also ships with some helpful utilities. Other than that, you are actually using Flask. ## Relationship with marshmallow APIFlask accepts marshmallow schema as data schema, uses webargs to validate the request data against the schema, and uses apispec to generate the OpenAPI representation from the schema. You can build marshmallow schemas just like before, but APIFlask also exposes some marshmallow APIs for convenience (it's optional, you can still import everything from marshamallow directly): - `apiflask.Schema`: The base marshmallow schema class. - `apiflask.fields`: The marshmallow fields, contain the fields from both marshmallow and Flask-Marshmallow. Beware that the aliases (`Url`, `Str`, `Int`, `Bool`, etc.) were removed. - `apiflask.validators`: The marshmallow validators. ```python from apiflask import Schema from apiflask.fields import Integer, String from apiflask.validators import Length, OneOf from marshmallow import pre_load, post_dump, ValidationError ``` ## Credits APIFlask starts as a fork of [APIFairy](https://github.com/miguelgrinberg/APIFairy) and is inspired by [flask-smorest](https://github.com/marshmallow-code/flask-smorest) and [FastAPI](https://github.com/tiangolo/fastapi) (see *[Comparison and Motivations](https://apiflask.com/comparison)* for the comparison between these projects).


نیازمندی

مقدار نام
<2.2.0,>=1.1.0 flask
>=0.12.0 flask-marshmallow
>=6 webargs
>=4 flask-httpauth
>=4.2.0 apispec
- typing-extensions
>=3.2 asgiref
- python-dotenv
- pyyaml


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl APIFlask-1.1.3:

    pip install APIFlask-1.1.3.whl


نصب پکیج tar.gz APIFlask-1.1.3:

    pip install APIFlask-1.1.3.tar.gz