معرفی شرکت ها


aws-cdk.aws-stepfunctions-1.99.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The CDK Construct Library for AWS::StepFunctions
ویژگی مقدار
سیستم عامل OS Independent
نام فایل aws-cdk.aws-stepfunctions-1.99.0
نام aws-cdk.aws-stepfunctions
نسخه کتابخانه 1.99.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Amazon Web Services
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/aws/aws-cdk
آدرس اینترنتی https://pypi.org/project/aws-cdk.aws-stepfunctions/
مجوز Apache-2.0
# AWS Step Functions Construct Library <!--BEGIN STABILITY BANNER-->--- ![cfn-resources: Stable](https://img.shields.io/badge/cfn--resources-stable-success.svg?style=for-the-badge) ![cdk-constructs: Stable](https://img.shields.io/badge/cdk--constructs-stable-success.svg?style=for-the-badge) --- <!--END STABILITY BANNER--> The `@aws-cdk/aws-stepfunctions` package contains constructs for building serverless workflows using objects. Use this in conjunction with the `@aws-cdk/aws-stepfunctions-tasks` package, which contains classes used to call other AWS services. Defining a workflow looks like this (for the [Step Functions Job Poller example](https://docs.aws.amazon.com/step-functions/latest/dg/job-status-poller-sample.html)): ## Example ```python import aws_cdk.aws_lambda as lambda_ # submit_lambda: lambda.Function # get_status_lambda: lambda.Function submit_job = tasks.LambdaInvoke(self, "Submit Job", lambda_function=submit_lambda, # Lambda's result is in the attribute `Payload` output_path="$.Payload" ) wait_x = sfn.Wait(self, "Wait X Seconds", time=sfn.WaitTime.seconds_path("$.waitSeconds") ) get_status = tasks.LambdaInvoke(self, "Get Job Status", lambda_function=get_status_lambda, # Pass just the field named "guid" into the Lambda, put the # Lambda's result in a field called "status" in the response input_path="$.guid", output_path="$.Payload" ) job_failed = sfn.Fail(self, "Job Failed", cause="AWS Batch Job Failed", error="DescribeJob returned FAILED" ) final_status = tasks.LambdaInvoke(self, "Get Final Job Status", lambda_function=get_status_lambda, # Use "guid" field as input input_path="$.guid", output_path="$.Payload" ) definition = submit_job.next(wait_x).next(get_status).next(sfn.Choice(self, "Job Complete?").when(sfn.Condition.string_equals("$.status", "FAILED"), job_failed).when(sfn.Condition.string_equals("$.status", "SUCCEEDED"), final_status).otherwise(wait_x)) sfn.StateMachine(self, "StateMachine", definition=definition, timeout=Duration.minutes(5) ) ``` You can find more sample snippets and learn more about the service integrations in the `@aws-cdk/aws-stepfunctions-tasks` package. ## State Machine A `stepfunctions.StateMachine` is a resource that takes a state machine definition. The definition is specified by its start state, and encompasses all states reachable from the start state: ```python start_state = sfn.Pass(self, "StartState") sfn.StateMachine(self, "StateMachine", definition=start_state ) ``` State machines execute using an IAM Role, which will automatically have all permissions added that are required to make all state machine tasks execute properly (for example, permissions to invoke any Lambda functions you add to your workflow). A role will be created by default, but you can supply an existing one as well. ## Accessing State (the JsonPath class) Every State Machine execution has [State Machine Data](https://docs.aws.amazon.com/step-functions/latest/dg/concepts-state-machine-data.html): a JSON document containing keys and values that is fed into the state machine, gets modified as the state machine progresses, and finally is produced as output. You can pass fragments of this State Machine Data into Tasks of the state machine. To do so, use the static methods on the `JsonPath` class. For example, to pass the value that's in the data key of `OrderId` to a Lambda function as you invoke it, use `JsonPath.stringAt('$.OrderId')`, like so: ```python import aws_cdk.aws_lambda as lambda_ # order_fn: lambda.Function submit_job = tasks.LambdaInvoke(self, "InvokeOrderProcessor", lambda_function=order_fn, payload=sfn.TaskInput.from_object({ "OrderId": sfn.JsonPath.string_at("$.OrderId") }) ) ``` The following methods are available: | Method | Purpose | |--------|---------| | `JsonPath.stringAt('$.Field')` | reference a field, return the type as a `string`. | | `JsonPath.listAt('$.Field')` | reference a field, return the type as a list of strings. | | `JsonPath.numberAt('$.Field')` | reference a field, return the type as a number. Use this for functions that expect a number argument. | | `JsonPath.objectAt('$.Field')` | reference a field, return the type as an `IResolvable`. Use this for functions that expect an object argument. | | `JsonPath.entirePayload` | reference the entire data object (equivalent to a path of `$`). | | `JsonPath.taskToken` | reference the [Task Token](https://docs.aws.amazon.com/step-functions/latest/dg/connect-to-resource.html#connect-wait-token), used for integration patterns that need to run for a long time. | You can also call [intrinsic functions](https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-intrinsic-functions.html) using the methods on `JsonPath`: | Method | Purpose | |--------|---------| | `JsonPath.array(JsonPath.stringAt('$.Field'), ...)` | make an array from other elements. | | `JsonPath.format('The value is {}.', JsonPath.stringAt('$.Value'))` | insert elements into a format string. | | `JsonPath.stringToJson(JsonPath.stringAt('$.ObjStr'))` | parse a JSON string to an object | | `JsonPath.jsonToString(JsonPath.objectAt('$.Obj'))` | stringify an object to a JSON string | ## Amazon States Language This library comes with a set of classes that model the [Amazon States Language](https://states-language.net/spec.html). The following State classes are supported: * [`Task`](#task) * [`Pass`](#pass) * [`Wait`](#wait) * [`Choice`](#choice) * [`Parallel`](#parallel) * [`Succeed`](#succeed) * [`Fail`](#fail) * [`Map`](#map) * [`Custom State`](#custom-state) An arbitrary JSON object (specified at execution start) is passed from state to state and transformed during the execution of the workflow. For more information, see the States Language spec. ### Task A `Task` represents some work that needs to be done. The exact work to be done is determine by a class that implements `IStepFunctionsTask`, a collection of which can be found in the `@aws-cdk/aws-stepfunctions-tasks` module. The tasks in the `@aws-cdk/aws-stepfunctions-tasks` module support the [service integration pattern](https://docs.aws.amazon.com/step-functions/latest/dg/connect-to-resource.html) that integrates Step Functions with services directly in the Amazon States language. ### Pass A `Pass` state passes its input to its output, without performing work. Pass states are useful when constructing and debugging state machines. The following example injects some fixed data into the state machine through the `result` field. The `result` field will be added to the input and the result will be passed as the state's output. ```python # Makes the current JSON state { ..., "subObject": { "hello": "world" } } pass = sfn.Pass(self, "Add Hello World", result=sfn.Result.from_object({"hello": "world"}), result_path="$.subObject" ) # Set the next state next_state = sfn.Pass(self, "NextState") pass.next(next_state) ``` The `Pass` state also supports passing key-value pairs as input. Values can be static, or selected from the input with a path. The following example filters the `greeting` field from the state input and also injects a field called `otherData`. ```python pass = sfn.Pass(self, "Filter input and inject data", parameters={ # input to the pass state "input": sfn.JsonPath.string_at("$.input.greeting"), "other_data": "some-extra-stuff"} ) ``` The object specified in `parameters` will be the input of the `Pass` state. Since neither `Result` nor `ResultPath` are supplied, the `Pass` state copies its input through to its output. Learn more about the [Pass state](https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-pass-state.html) ### Wait A `Wait` state waits for a given number of seconds, or until the current time hits a particular time. The time to wait may be taken from the execution's JSON state. ```python # Wait until it's the time mentioned in the the state object's "triggerTime" # field. wait = sfn.Wait(self, "Wait For Trigger Time", time=sfn.WaitTime.timestamp_path("$.triggerTime") ) # Set the next state start_the_work = sfn.Pass(self, "StartTheWork") wait.next(start_the_work) ``` ### Choice A `Choice` state can take a different path through the workflow based on the values in the execution's JSON state: ```python choice = sfn.Choice(self, "Did it work?") # Add conditions with .when() success_state = sfn.Pass(self, "SuccessState") failure_state = sfn.Pass(self, "FailureState") choice.when(sfn.Condition.string_equals("$.status", "SUCCESS"), success_state) choice.when(sfn.Condition.number_greater_than("$.attempts", 5), failure_state) # Use .otherwise() to indicate what should be done if none of the conditions match try_again_state = sfn.Pass(self, "TryAgainState") choice.otherwise(try_again_state) ``` If you want to temporarily branch your workflow based on a condition, but have all branches come together and continuing as one (similar to how an `if ... then ... else` works in a programming language), use the `.afterwards()` method: ```python choice = sfn.Choice(self, "What color is it?") handle_blue_item = sfn.Pass(self, "HandleBlueItem") handle_red_item = sfn.Pass(self, "HandleRedItem") handle_other_item_color = sfn.Pass(self, "HanldeOtherItemColor") choice.when(sfn.Condition.string_equals("$.color", "BLUE"), handle_blue_item) choice.when(sfn.Condition.string_equals("$.color", "RED"), handle_red_item) choice.otherwise(handle_other_item_color) # Use .afterwards() to join all possible paths back together and continue ship_the_item = sfn.Pass(self, "ShipTheItem") choice.afterwards().next(ship_the_item) ``` If your `Choice` doesn't have an `otherwise()` and none of the conditions match the JSON state, a `NoChoiceMatched` error will be thrown. Wrap the state machine in a `Parallel` state if you want to catch and recover from this. #### Available Conditions see [step function comparison operators](https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-choice-state.html#amazon-states-language-choice-state-rules) * `Condition.isPresent` - matches if a json path is present * `Condition.isNotPresent` - matches if a json path is not present * `Condition.isString` - matches if a json path contains a string * `Condition.isNotString` - matches if a json path is not a string * `Condition.isNumeric` - matches if a json path is numeric * `Condition.isNotNumeric` - matches if a json path is not numeric * `Condition.isBoolean` - matches if a json path is boolean * `Condition.isNotBoolean` - matches if a json path is not boolean * `Condition.isTimestamp` - matches if a json path is a timestamp * `Condition.isNotTimestamp` - matches if a json path is not a timestamp * `Condition.isNotNull` - matches if a json path is not null * `Condition.isNull` - matches if a json path is null * `Condition.booleanEquals` - matches if a boolean field has a given value * `Condition.booleanEqualsJsonPath` - matches if a boolean field equals a value in a given mapping path * `Condition.stringEqualsJsonPath` - matches if a string field equals a given mapping path * `Condition.stringEquals` - matches if a field equals a string value * `Condition.stringLessThan` - matches if a string field sorts before a given value * `Condition.stringLessThanJsonPath` - matches if a string field sorts before a value at given mapping path * `Condition.stringLessThanEquals` - matches if a string field sorts equal to or before a given value * `Condition.stringLessThanEqualsJsonPath` - matches if a string field sorts equal to or before a given mapping * `Condition.stringGreaterThan` - matches if a string field sorts after a given value * `Condition.stringGreaterThanJsonPath` - matches if a string field sorts after a value at a given mapping path * `Condition.stringGreaterThanEqualsJsonPath` - matches if a string field sorts after or equal to value at a given mapping path * `Condition.stringGreaterThanEquals` - matches if a string field sorts after or equal to a given value * `Condition.numberEquals` - matches if a numeric field has the given value * `Condition.numberEqualsJsonPath` - matches if a numeric field has the value in a given mapping path * `Condition.numberLessThan` - matches if a numeric field is less than the given value * `Condition.numberLessThanJsonPath` - matches if a numeric field is less than the value at the given mapping path * `Condition.numberLessThanEquals` - matches if a numeric field is less than or equal to the given value * `Condition.numberLessThanEqualsJsonPath` - matches if a numeric field is less than or equal to the numeric value at given mapping path * `Condition.numberGreaterThan` - matches if a numeric field is greater than the given value * `Condition.numberGreaterThanJsonPath` - matches if a numeric field is greater than the value at a given mapping path * `Condition.numberGreaterThanEquals` - matches if a numeric field is greater than or equal to the given value * `Condition.numberGreaterThanEqualsJsonPath` - matches if a numeric field is greater than or equal to the value at a given mapping path * `Condition.timestampEquals` - matches if a timestamp field is the same time as the given timestamp * `Condition.timestampEqualsJsonPath` - matches if a timestamp field is the same time as the timestamp at a given mapping path * `Condition.timestampLessThan` - matches if a timestamp field is before the given timestamp * `Condition.timestampLessThanJsonPath` - matches if a timestamp field is before the timestamp at a given mapping path * `Condition.timestampLessThanEquals` - matches if a timestamp field is before or equal to the given timestamp * `Condition.timestampLessThanEqualsJsonPath` - matches if a timestamp field is before or equal to the timestamp at a given mapping path * `Condition.timestampGreaterThan` - matches if a timestamp field is after the timestamp at a given mapping path * `Condition.timestampGreaterThanJsonPath` - matches if a timestamp field is after the timestamp at a given mapping path * `Condition.timestampGreaterThanEquals` - matches if a timestamp field is after or equal to the given timestamp * `Condition.timestampGreaterThanEqualsJsonPath` - matches if a timestamp field is after or equal to the timestamp at a given mapping path * `Condition.stringMatches` - matches if a field matches a string pattern that can contain a wild card (*) e.g: log-*.txt or *LATEST*. No other characters other than "*" have any special meaning - * can be escaped: \\* ### Parallel A `Parallel` state executes one or more subworkflows in parallel. It can also be used to catch and recover from errors in subworkflows. ```python parallel = sfn.Parallel(self, "Do the work in parallel") # Add branches to be executed in parallel ship_item = sfn.Pass(self, "ShipItem") send_invoice = sfn.Pass(self, "SendInvoice") restock = sfn.Pass(self, "Restock") parallel.branch(ship_item) parallel.branch(send_invoice) parallel.branch(restock) # Retry the whole workflow if something goes wrong parallel.add_retry(max_attempts=1) # How to recover from errors send_failure_notification = sfn.Pass(self, "SendFailureNotification") parallel.add_catch(send_failure_notification) # What to do in case everything succeeded close_order = sfn.Pass(self, "CloseOrder") parallel.next(close_order) ``` ### Succeed Reaching a `Succeed` state terminates the state machine execution with a successful status. ```python success = sfn.Succeed(self, "We did it!") ``` ### Fail Reaching a `Fail` state terminates the state machine execution with a failure status. The fail state should report the reason for the failure. Failures can be caught by encompassing `Parallel` states. ```python success = sfn.Fail(self, "Fail", error="WorkflowFailure", cause="Something went wrong" ) ``` ### Map A `Map` state can be used to run a set of steps for each element of an input array. A `Map` state will execute the same steps for multiple entries of an array in the state input. While the `Parallel` state executes multiple branches of steps using the same input, a `Map` state will execute the same steps for multiple entries of an array in the state input. ```python map = sfn.Map(self, "Map State", max_concurrency=1, items_path=sfn.JsonPath.string_at("$.inputForMap") ) map.iterator(sfn.Pass(self, "Pass State")) ``` ### Custom State It's possible that the high-level constructs for the states or `stepfunctions-tasks` do not have the states or service integrations you are looking for. The primary reasons for this lack of functionality are: * A [service integration](https://docs.aws.amazon.com/step-functions/latest/dg/concepts-service-integrations.html) is available through Amazon States Langauge, but not available as construct classes in the CDK. * The state or state properties are available through Step Functions, but are not configurable through constructs If a feature is not available, a `CustomState` can be used to supply any Amazon States Language JSON-based object as the state definition. [Code Snippets](https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-code-snippet.html#tutorial-code-snippet-1) are available and can be plugged in as the state definition. Custom states can be chained together with any of the other states to create your state machine definition. You will also need to provide any permissions that are required to the `role` that the State Machine uses. The following example uses the `DynamoDB` service integration to insert data into a DynamoDB table. ```python import aws_cdk.aws_dynamodb as dynamodb # create a table table = dynamodb.Table(self, "montable", partition_key=dynamodb.Attribute( name="id", type=dynamodb.AttributeType.STRING ) ) final_status = sfn.Pass(self, "final step") # States language JSON to put an item into DynamoDB # snippet generated from https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-code-snippet.html#tutorial-code-snippet-1 state_json = { "Type": "Task", "Resource": "arn:aws:states:::dynamodb:putItem", "Parameters": { "TableName": table.table_name, "Item": { "id": { "S": "MyEntry" } } }, "ResultPath": null } # custom state which represents a task to insert data into DynamoDB custom = sfn.CustomState(self, "my custom task", state_json=state_json ) chain = sfn.Chain.start(custom).next(final_status) sm = sfn.StateMachine(self, "StateMachine", definition=chain, timeout=Duration.seconds(30) ) # don't forget permissions. You need to assign them table.grant_write_data(sm) ``` ## Task Chaining To make defining work flows as convenient (and readable in a top-to-bottom way) as writing regular programs, it is possible to chain most methods invocations. In particular, the `.next()` method can be repeated. The result of a series of `.next()` calls is called a **Chain**, and can be used when defining the jump targets of `Choice.on` or `Parallel.branch`: ```python step1 = sfn.Pass(self, "Step1") step2 = sfn.Pass(self, "Step2") step3 = sfn.Pass(self, "Step3") step4 = sfn.Pass(self, "Step4") step5 = sfn.Pass(self, "Step5") step6 = sfn.Pass(self, "Step6") step7 = sfn.Pass(self, "Step7") step8 = sfn.Pass(self, "Step8") step9 = sfn.Pass(self, "Step9") step10 = sfn.Pass(self, "Step10") choice = sfn.Choice(self, "Choice") condition1 = sfn.Condition.string_equals("$.status", "SUCCESS") parallel = sfn.Parallel(self, "Parallel") finish = sfn.Pass(self, "Finish") definition = step1.next(step2).next(choice.when(condition1, step3.next(step4).next(step5)).otherwise(step6).afterwards()).next(parallel.branch(step7.next(step8)).branch(step9.next(step10))).next(finish) sfn.StateMachine(self, "StateMachine", definition=definition ) ``` If you don't like the visual look of starting a chain directly off the first step, you can use `Chain.start`: ```python step1 = sfn.Pass(self, "Step1") step2 = sfn.Pass(self, "Step2") step3 = sfn.Pass(self, "Step3") definition = sfn.Chain.start(step1).next(step2).next(step3) ``` ## State Machine Fragments It is possible to define reusable (or abstracted) mini-state machines by defining a construct that implements `IChainable`, which requires you to define two fields: * `startState: State`, representing the entry point into this state machine. * `endStates: INextable[]`, representing the (one or more) states that outgoing transitions will be added to if you chain onto the fragment. Since states will be named after their construct IDs, you may need to prefix the IDs of states if you plan to instantiate the same state machine fragment multiples times (otherwise all states in every instantiation would have the same name). The class `StateMachineFragment` contains some helper functions (like `prefixStates()`) to make it easier for you to do this. If you define your state machine as a subclass of this, it will be convenient to use: ```python from aws_cdk.core import Stack from constructs import Construct import aws_cdk.aws_stepfunctions as sfn class MyJob(sfn.StateMachineFragment): def __init__(self, parent, id, *, jobFlavor): super().__init__(parent, id) choice = sfn.Choice(self, "Choice").when(sfn.Condition.string_equals("$.branch", "left"), sfn.Pass(self, "Left Branch")).when(sfn.Condition.string_equals("$.branch", "right"), sfn.Pass(self, "Right Branch")) # ... self.start_state = choice self.end_states = choice.afterwards().end_states class MyStack(Stack): def __init__(self, scope, id): super().__init__(scope, id) # Do 3 different variants of MyJob in parallel parallel = sfn.Parallel(self, "All jobs").branch(MyJob(self, "Quick", job_flavor="quick").prefix_states()).branch(MyJob(self, "Medium", job_flavor="medium").prefix_states()).branch(MyJob(self, "Slow", job_flavor="slow").prefix_states()) sfn.StateMachine(self, "MyStateMachine", definition=parallel ) ``` A few utility functions are available to parse state machine fragments. * `State.findReachableStates`: Retrieve the list of states reachable from a given state. * `State.findReachableEndStates`: Retrieve the list of end or terminal states reachable from a given state. ## Activity **Activities** represent work that is done on some non-Lambda worker pool. The Step Functions workflow will submit work to this Activity, and a worker pool that you run yourself, probably on EC2, will pull jobs from the Activity and submit the results of individual jobs back. You need the ARN to do so, so if you use Activities be sure to pass the Activity ARN into your worker pool: ```python activity = sfn.Activity(self, "Activity") # Read this CloudFormation Output from your application and use it to poll for work on # the activity. CfnOutput(self, "ActivityArn", value=activity.activity_arn) ``` ### Activity-Level Permissions Granting IAM permissions to an activity can be achieved by calling the `grant(principal, actions)` API: ```python activity = sfn.Activity(self, "Activity") role = iam.Role(self, "Role", assumed_by=iam.ServicePrincipal("lambda.amazonaws.com") ) activity.grant(role, "states:SendTaskSuccess") ``` This will grant the IAM principal the specified actions onto the activity. ## Metrics `Task` object expose various metrics on the execution of that particular task. For example, to create an alarm on a particular task failing: ```python # task: sfn.Task cloudwatch.Alarm(self, "TaskAlarm", metric=task.metric_failed(), threshold=1, evaluation_periods=1 ) ``` There are also metrics on the complete state machine: ```python # state_machine: sfn.StateMachine cloudwatch.Alarm(self, "StateMachineAlarm", metric=state_machine.metric_failed(), threshold=1, evaluation_periods=1 ) ``` And there are metrics on the capacity of all state machines in your account: ```python cloudwatch.Alarm(self, "ThrottledAlarm", metric=sfn.StateTransitionMetric.metric_throttled_events(), threshold=10, evaluation_periods=2 ) ``` ## Error names Step Functions identifies errors in the Amazon States Language using case-sensitive strings, known as error names. The Amazon States Language defines a set of built-in strings that name well-known errors, all beginning with the `States.` prefix. * `States.ALL` - A wildcard that matches any known error name. * `States.Runtime` - An execution failed due to some exception that could not be processed. Often these are caused by errors at runtime, such as attempting to apply InputPath or OutputPath on a null JSON payload. A `States.Runtime` error is not retriable, and will always cause the execution to fail. A retry or catch on `States.ALL` will NOT catch States.Runtime errors. * `States.DataLimitExceeded` - A States.DataLimitExceeded exception will be thrown for the following: * When the output of a connector is larger than payload size quota. * When the output of a state is larger than payload size quota. * When, after Parameters processing, the input of a state is larger than the payload size quota. * See [the AWS documentation](https://docs.aws.amazon.com/step-functions/latest/dg/limits-overview.html) to learn more about AWS Step Functions Quotas. * `States.HeartbeatTimeout` - A Task state failed to send a heartbeat for a period longer than the HeartbeatSeconds value. * `States.Timeout` - A Task state either ran longer than the TimeoutSeconds value, or failed to send a heartbeat for a period longer than the HeartbeatSeconds value. * `States.TaskFailed`- A Task state failed during the execution. When used in a retry or catch, `States.TaskFailed` acts as a wildcard that matches any known error name except for `States.Timeout`. ## Logging Enable logging to CloudWatch by passing a logging configuration with a destination LogGroup: ```python import aws_cdk.aws_logs as logs log_group = logs.LogGroup(self, "MyLogGroup") sfn.StateMachine(self, "MyStateMachine", definition=sfn.Chain.start(sfn.Pass(self, "Pass")), logs=sfn.LogOptions( destination=log_group, level=sfn.LogLevel.ALL ) ) ``` ## X-Ray tracing Enable X-Ray tracing for StateMachine: ```python sfn.StateMachine(self, "MyStateMachine", definition=sfn.Chain.start(sfn.Pass(self, "Pass")), tracing_enabled=True ) ``` See [the AWS documentation](https://docs.aws.amazon.com/step-functions/latest/dg/concepts-xray-tracing.html) to learn more about AWS Step Functions's X-Ray support. ## State Machine Permission Grants IAM roles, users, or groups which need to be able to work with a State Machine should be granted IAM permissions. Any object that implements the `IGrantable` interface (has an associated principal) can be granted permissions by calling: * `stateMachine.grantStartExecution(principal)` - grants the principal the ability to execute the state machine * `stateMachine.grantRead(principal)` - grants the principal read access * `stateMachine.grantTaskResponse(principal)` - grants the principal the ability to send task tokens to the state machine * `stateMachine.grantExecution(principal, actions)` - grants the principal execution-level permissions for the IAM actions specified * `stateMachine.grant(principal, actions)` - grants the principal state-machine-level permissions for the IAM actions specified ### Start Execution Permission Grant permission to start an execution of a state machine by calling the `grantStartExecution()` API. ```python # definition: sfn.IChainable role = iam.Role(self, "Role", assumed_by=iam.ServicePrincipal("lambda.amazonaws.com") ) state_machine = sfn.StateMachine(self, "StateMachine", definition=definition ) # Give role permission to start execution of state machine state_machine.grant_start_execution(role) ``` The following permission is provided to a service principal by the `grantStartExecution()` API: * `states:StartExecution` - to state machine ### Read Permissions Grant `read` access to a state machine by calling the `grantRead()` API. ```python # definition: sfn.IChainable role = iam.Role(self, "Role", assumed_by=iam.ServicePrincipal("lambda.amazonaws.com") ) state_machine = sfn.StateMachine(self, "StateMachine", definition=definition ) # Give role read access to state machine state_machine.grant_read(role) ``` The following read permissions are provided to a service principal by the `grantRead()` API: * `states:ListExecutions` - to state machine * `states:ListStateMachines` - to state machine * `states:DescribeExecution` - to executions * `states:DescribeStateMachineForExecution` - to executions * `states:GetExecutionHistory` - to executions * `states:ListActivities` - to `*` * `states:DescribeStateMachine` - to `*` * `states:DescribeActivity` - to `*` ### Task Response Permissions Grant permission to allow task responses to a state machine by calling the `grantTaskResponse()` API: ```python # definition: sfn.IChainable role = iam.Role(self, "Role", assumed_by=iam.ServicePrincipal("lambda.amazonaws.com") ) state_machine = sfn.StateMachine(self, "StateMachine", definition=definition ) # Give role task response permissions to the state machine state_machine.grant_task_response(role) ``` The following read permissions are provided to a service principal by the `grantRead()` API: * `states:SendTaskSuccess` - to state machine * `states:SendTaskFailure` - to state machine * `states:SendTaskHeartbeat` - to state machine ### Execution-level Permissions Grant execution-level permissions to a state machine by calling the `grantExecution()` API: ```python # definition: sfn.IChainable role = iam.Role(self, "Role", assumed_by=iam.ServicePrincipal("lambda.amazonaws.com") ) state_machine = sfn.StateMachine(self, "StateMachine", definition=definition ) # Give role permission to get execution history of ALL executions for the state machine state_machine.grant_execution(role, "states:GetExecutionHistory") ``` ### Custom Permissions You can add any set of permissions to a state machine by calling the `grant()` API. ```python # definition: sfn.IChainable user = iam.User(self, "MyUser") state_machine = sfn.StateMachine(self, "StateMachine", definition=definition ) # give user permission to send task success to the state machine state_machine.grant(user, "states:SendTaskSuccess") ``` ## Import Any Step Functions state machine that has been created outside the stack can be imported into your CDK stack. State machines can be imported by their ARN via the `StateMachine.fromStateMachineArn()` API ```python app = App() stack = Stack(app, "MyStack") sfn.StateMachine.from_state_machine_arn(stack, "ImportedStateMachine", "arn:aws:states:us-east-1:123456789012:stateMachine:StateMachine2E01A3A5-N5TJppzoevKQ") ```


نیازمندی

مقدار نام
==1.179.0 aws-cdk.aws-cloudwatch
==1.179.0 aws-cdk.aws-events
==1.179.0 aws-cdk.aws-iam
==1.179.0 aws-cdk.aws-logs
==1.179.0 aws-cdk.aws-s3
==1.179.0 aws-cdk.core
<4.0.0,>=3.3.69 constructs
<2.0.0,>=1.70.0 jsii
>=0.0.3 publication
~=2.13.3 typeguard


زبان مورد نیاز

مقدار نام
~=3.7 Python


نحوه نصب


نصب پکیج whl aws-cdk.aws-stepfunctions-1.99.0:

    pip install aws-cdk.aws-stepfunctions-1.99.0.whl


نصب پکیج tar.gz aws-cdk.aws-stepfunctions-1.99.0:

    pip install aws-cdk.aws-stepfunctions-1.99.0.tar.gz