معرفی شرکت ها


aws-cdk.aws-appsync-1.99.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The CDK Construct Library for AWS::AppSync
ویژگی مقدار
سیستم عامل OS Independent
نام فایل aws-cdk.aws-appsync-1.99.0
نام aws-cdk.aws-appsync
نسخه کتابخانه 1.99.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Amazon Web Services
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/aws/aws-cdk
آدرس اینترنتی https://pypi.org/project/aws-cdk.aws-appsync/
مجوز Apache-2.0
# AWS AppSync Construct Library <!--BEGIN STABILITY BANNER-->--- ![cfn-resources: Stable](https://img.shields.io/badge/cfn--resources-stable-success.svg?style=for-the-badge) > All classes with the `Cfn` prefix in this module ([CFN Resources](https://docs.aws.amazon.com/cdk/latest/guide/constructs.html#constructs_lib)) are always stable and safe to use. ![cdk-constructs: Experimental](https://img.shields.io/badge/cdk--constructs-experimental-important.svg?style=for-the-badge) > The APIs of higher level constructs in this module are experimental and under active development. > They are subject to non-backward compatible changes or removal in any future version. These are > not subject to the [Semantic Versioning](https://semver.org/) model and breaking changes will be > announced in the release notes. This means that while you may use them, you may need to update > your source code when upgrading to a newer version of this package. --- <!--END STABILITY BANNER--> The `@aws-cdk/aws-appsync` package contains constructs for building flexible APIs that use GraphQL. ```python import aws_cdk.aws_appsync as appsync ``` ## Example ### DynamoDB Example of a GraphQL API with `AWS_IAM` [authorization](#authorization) resolving into a DynamoDb backend data source. GraphQL schema file `schema.graphql`: ```gql type demo { id: String! version: String! } type Query { getDemos: [ demo! ] } input DemoInput { version: String! } type Mutation { addDemo(input: DemoInput!): demo } ``` CDK stack file `app-stack.ts`: ```python api = appsync.GraphqlApi(self, "Api", name="demo", schema=appsync.Schema.from_asset(path.join(__dirname, "schema.graphql")), authorization_config=appsync.AuthorizationConfig( default_authorization=appsync.AuthorizationMode( authorization_type=appsync.AuthorizationType.IAM ) ), xray_enabled=True ) demo_table = dynamodb.Table(self, "DemoTable", partition_key=dynamodb.Attribute( name="id", type=dynamodb.AttributeType.STRING ) ) demo_dS = api.add_dynamo_db_data_source("demoDataSource", demo_table) # Resolver for the Query "getDemos" that scans the DynamoDb table and returns the entire list. demo_dS.create_resolver( type_name="Query", field_name="getDemos", request_mapping_template=appsync.MappingTemplate.dynamo_db_scan_table(), response_mapping_template=appsync.MappingTemplate.dynamo_db_result_list() ) # Resolver for the Mutation "addDemo" that puts the item into the DynamoDb table. demo_dS.create_resolver( type_name="Mutation", field_name="addDemo", request_mapping_template=appsync.MappingTemplate.dynamo_db_put_item( appsync.PrimaryKey.partition("id").auto(), appsync.Values.projecting("input")), response_mapping_template=appsync.MappingTemplate.dynamo_db_result_item() ) ``` ### Aurora Serverless AppSync provides a data source for executing SQL commands against Amazon Aurora Serverless clusters. You can use AppSync resolvers to execute SQL statements against the Data API with GraphQL queries, mutations, and subscriptions. ```python # Build a data source for AppSync to access the database. # api: appsync.GraphqlApi # Create username and password secret for DB Cluster secret = rds.DatabaseSecret(self, "AuroraSecret", username="clusteradmin" ) # The VPC to place the cluster in vpc = ec2.Vpc(self, "AuroraVpc") # Create the serverless cluster, provide all values needed to customise the database. cluster = rds.ServerlessCluster(self, "AuroraCluster", engine=rds.DatabaseClusterEngine.AURORA_MYSQL, vpc=vpc, credentials={"username": "clusteradmin"}, cluster_identifier="db-endpoint-test", default_database_name="demos" ) rds_dS = api.add_rds_data_source("rds", cluster, secret, "demos") # Set up a resolver for an RDS query. rds_dS.create_resolver( type_name="Query", field_name="getDemosRds", request_mapping_template=appsync.MappingTemplate.from_string(""" { "version": "2018-05-29", "statements": [ "SELECT * FROM demos" ] } """), response_mapping_template=appsync.MappingTemplate.from_string(""" $utils.toJson($utils.rds.toJsonObject($ctx.result)[0]) """) ) # Set up a resolver for an RDS mutation. rds_dS.create_resolver( type_name="Mutation", field_name="addDemoRds", request_mapping_template=appsync.MappingTemplate.from_string(""" { "version": "2018-05-29", "statements": [ "INSERT INTO demos VALUES (:id, :version)", "SELECT * WHERE id = :id" ], "variableMap": { ":id": $util.toJson($util.autoId()), ":version": $util.toJson($ctx.args.version) } } """), response_mapping_template=appsync.MappingTemplate.from_string(""" $utils.toJson($utils.rds.toJsonObject($ctx.result)[1][0]) """) ) ``` ### HTTP Endpoints GraphQL schema file `schema.graphql`: ```gql type job { id: String! version: String! } input DemoInput { version: String! } type Mutation { callStepFunction(input: DemoInput!): job } ``` GraphQL request mapping template `request.vtl`: ```json { "version": "2018-05-29", "method": "POST", "resourcePath": "/", "params": { "headers": { "content-type": "application/x-amz-json-1.0", "x-amz-target":"AWSStepFunctions.StartExecution" }, "body": { "stateMachineArn": "<your step functions arn>", "input": "{ \"id\": \"$context.arguments.id\" }" } } } ``` GraphQL response mapping template `response.vtl`: ```json { "id": "${context.result.id}" } ``` CDK stack file `app-stack.ts`: ```python api = appsync.GraphqlApi(self, "api", name="api", schema=appsync.Schema.from_asset(path.join(__dirname, "schema.graphql")) ) http_ds = api.add_http_data_source("ds", "https://states.amazonaws.com", name="httpDsWithStepF", description="from appsync to StepFunctions Workflow", authorization_config=appsync.AwsIamConfig( signing_region="us-east-1", signing_service_name="states" ) ) http_ds.create_resolver( type_name="Mutation", field_name="callStepFunction", request_mapping_template=appsync.MappingTemplate.from_file("request.vtl"), response_mapping_template=appsync.MappingTemplate.from_file("response.vtl") ) ``` ### Amazon OpenSearch Service AppSync has builtin support for Amazon OpenSearch Service (successor to Amazon Elasticsearch Service) from domains that are provisioned through your AWS account. You can use AppSync resolvers to perform GraphQL operations such as queries, mutations, and subscriptions. ```python import aws_cdk.aws_opensearchservice as opensearch # api: appsync.GraphqlApi user = iam.User(self, "User") domain = opensearch.Domain(self, "Domain", version=opensearch.EngineVersion.OPENSEARCH_1_2, removal_policy=RemovalPolicy.DESTROY, fine_grained_access_control=opensearch.AdvancedSecurityOptions(master_user_arn=user.user_arn), encryption_at_rest=opensearch.EncryptionAtRestOptions(enabled=True), node_to_node_encryption=True, enforce_https=True ) ds = api.add_open_search_data_source("ds", domain) ds.create_resolver( type_name="Query", field_name="getTests", request_mapping_template=appsync.MappingTemplate.from_string(JSON.stringify({ "version": "2017-02-28", "operation": "GET", "path": "/id/post/_search", "params": { "headers": {}, "query_string": {}, "body": {"from": 0, "size": 50} } })), response_mapping_template=appsync.MappingTemplate.from_string("""[ #foreach($entry in $context.result.hits.hits) #if( $velocityCount > 1 ) , #end $utils.toJson($entry.get("_source")) #end ]""") ) ``` ## Custom Domain Names For many use cases you may want to associate a custom domain name with your GraphQL API. This can be done during the API creation. ```python import aws_cdk.aws_certificatemanager as acm import aws_cdk.aws_route53 as route53 # hosted zone and route53 features # hosted_zone_id: str zone_name = "example.com" my_domain_name = "api.example.com" certificate = acm.Certificate(self, "cert", domain_name=my_domain_name) api = appsync.GraphqlApi(self, "api", name="myApi", domain_name=appsync.DomainOptions( certificate=certificate, domain_name=my_domain_name ) ) # hosted zone for adding appsync domain zone = route53.HostedZone.from_hosted_zone_attributes(self, "HostedZone", hosted_zone_id=hosted_zone_id, zone_name=zone_name ) # create a cname to the appsync domain. will map to something like xxxx.cloudfront.net route53.CnameRecord(self, "CnameApiRecord", record_name="api", zone=zone, domain_name=my_domain_name ) ``` ## Schema Every GraphQL Api needs a schema to define the Api. CDK offers `appsync.Schema` for static convenience methods for various types of schema declaration: code-first or schema-first. ### Code-First When declaring your GraphQL Api, CDK defaults to a code-first approach if the `schema` property is not configured. ```python api = appsync.GraphqlApi(self, "api", name="myApi") ``` CDK will declare a `Schema` class that will give your Api access functions to define your schema code-first: `addType`, `addToSchema`, etc. You can also declare your `Schema` class outside of your CDK stack, to define your schema externally. ```python schema = appsync.Schema() schema.add_type(appsync.ObjectType("demo", definition={"id": appsync.GraphqlType.id()} )) api = appsync.GraphqlApi(self, "api", name="myApi", schema=schema ) ``` See the [code-first schema](#Code-First-Schema) section for more details. ### Schema-First You can define your GraphQL Schema from a file on disk. For convenience, use the `appsync.Schema.fromAsset` to specify the file representing your schema. ```python api = appsync.GraphqlApi(self, "api", name="myApi", schema=appsync.Schema.from_asset(path.join(__dirname, "schema.graphl")) ) ``` ## Imports Any GraphQL Api that has been created outside the stack can be imported from another stack into your CDK app. Utilizing the `fromXxx` function, you have the ability to add data sources and resolvers through a `IGraphqlApi` interface. ```python # api: appsync.GraphqlApi # table: dynamodb.Table imported_api = appsync.GraphqlApi.from_graphql_api_attributes(self, "IApi", graphql_api_id=api.api_id, graphql_api_arn=api.arn ) imported_api.add_dynamo_db_data_source("TableDataSource", table) ``` If you don't specify `graphqlArn` in `fromXxxAttributes`, CDK will autogenerate the expected `arn` for the imported api, given the `apiId`. For creating data sources and resolvers, an `apiId` is sufficient. ## Authorization There are multiple authorization types available for GraphQL API to cater to different access use cases. They are: * API Keys (`AuthorizationType.API_KEY`) * Amazon Cognito User Pools (`AuthorizationType.USER_POOL`) * OpenID Connect (`AuthorizationType.OPENID_CONNECT`) * AWS Identity and Access Management (`AuthorizationType.AWS_IAM`) * AWS Lambda (`AuthorizationType.AWS_LAMBDA`) These types can be used simultaneously in a single API, allowing different types of clients to access data. When you specify an authorization type, you can also specify the corresponding authorization mode to finish defining your authorization. For example, this is a GraphQL API with AWS Lambda Authorization. ```python import aws_cdk.aws_lambda as lambda_ # auth_function: lambda.Function appsync.GraphqlApi(self, "api", name="api", schema=appsync.Schema.from_asset(path.join(__dirname, "appsync.test.graphql")), authorization_config=appsync.AuthorizationConfig( default_authorization=appsync.AuthorizationMode( authorization_type=appsync.AuthorizationType.LAMBDA, lambda_authorizer_config=appsync.LambdaAuthorizerConfig( handler=auth_function ) ) ) ) ``` ## Permissions When using `AWS_IAM` as the authorization type for GraphQL API, an IAM Role with correct permissions must be used for access to API. When configuring permissions, you can specify specific resources to only be accessible by `IAM` authorization. For example, if you want to only allow mutability for `IAM` authorized access you would configure the following. In `schema.graphql`: ```gql type Mutation { updateExample(...): ... @aws_iam } ``` In `IAM`: ```json { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "appsync:GraphQL" ], "Resource": [ "arn:aws:appsync:REGION:ACCOUNT_ID:apis/GRAPHQL_ID/types/Mutation/fields/updateExample" ] } ] } ``` See [documentation](https://docs.aws.amazon.com/appsync/latest/devguide/security.html#aws-iam-authorization) for more details. To make this easier, CDK provides `grant` API. Use the `grant` function for more granular authorization. ```python # api: appsync.GraphqlApi role = iam.Role(self, "Role", assumed_by=iam.ServicePrincipal("lambda.amazonaws.com") ) api.grant(role, appsync.IamResource.custom("types/Mutation/fields/updateExample"), "appsync:GraphQL") ``` ### IamResource In order to use the `grant` functions, you need to use the class `IamResource`. * `IamResource.custom(...arns)` permits custom ARNs and requires an argument. * `IamResouce.ofType(type, ...fields)` permits ARNs for types and their fields. * `IamResource.all()` permits ALL resources. ### Generic Permissions Alternatively, you can use more generic `grant` functions to accomplish the same usage. These include: * grantMutation (use to grant access to Mutation fields) * grantQuery (use to grant access to Query fields) * grantSubscription (use to grant access to Subscription fields) ```python # api: appsync.GraphqlApi # role: iam.Role # For generic types api.grant_mutation(role, "updateExample") # For custom types and granular design api.grant(role, appsync.IamResource.of_type("Mutation", "updateExample"), "appsync:GraphQL") ``` ## Pipeline Resolvers and AppSync Functions AppSync Functions are local functions that perform certain operations onto a backend data source. Developers can compose operations (Functions) and execute them in sequence with Pipeline Resolvers. ```python # api: appsync.GraphqlApi appsync_function = appsync.AppsyncFunction(self, "function", name="appsync_function", api=api, data_source=api.add_none_data_source("none"), request_mapping_template=appsync.MappingTemplate.from_file("request.vtl"), response_mapping_template=appsync.MappingTemplate.from_file("response.vtl") ) ``` AppSync Functions are used in tandem with pipeline resolvers to compose multiple operations. ```python # api: appsync.GraphqlApi # appsync_function: appsync.AppsyncFunction pipeline_resolver = appsync.Resolver(self, "pipeline", api=api, data_source=api.add_none_data_source("none"), type_name="typeName", field_name="fieldName", request_mapping_template=appsync.MappingTemplate.from_file("beforeRequest.vtl"), pipeline_config=[appsync_function], response_mapping_template=appsync.MappingTemplate.from_file("afterResponse.vtl") ) ``` Learn more about Pipeline Resolvers and AppSync Functions [here](https://docs.aws.amazon.com/appsync/latest/devguide/pipeline-resolvers.html). ## Code-First Schema CDK offers the ability to generate your schema in a code-first approach. A code-first approach offers a developer workflow with: * **modularity**: organizing schema type definitions into different files * **reusability**: simplifying down boilerplate/repetitive code * **consistency**: resolvers and schema definition will always be synced The code-first approach allows for **dynamic** schema generation. You can generate your schema based on variables and templates to reduce code duplication. ### Code-First Example To showcase the code-first approach. Let's try to model the following schema segment. ```gql interface Node { id: String } type Query { allFilms(after: String, first: Int, before: String, last: Int): FilmConnection } type FilmNode implements Node { filmName: String } type FilmConnection { edges: [FilmEdge] films: [Film] totalCount: Int } type FilmEdge { node: Film cursor: String } ``` Above we see a schema that allows for generating paginated responses. For example, we can query `allFilms(first: 100)` since `FilmConnection` acts as an intermediary for holding `FilmEdges` we can write a resolver to return the first 100 films. In a separate file, we can declare our object types and related functions. We will call this file `object-types.ts` and we will have created it in a way that allows us to generate other `XxxConnection` and `XxxEdges` in the future. ```python import aws_cdk.aws_appsync as appsync pluralize = require("pluralize") args = { "after": appsync.GraphqlType.string(), "first": appsync.GraphqlType.int(), "before": appsync.GraphqlType.string(), "last": appsync.GraphqlType.int() } Node = appsync.InterfaceType("Node", definition={"id": appsync.GraphqlType.string()} ) FilmNode = appsync.ObjectType("FilmNode", interface_types=[Node], definition={"film_name": appsync.GraphqlType.string()} ) def generate_edge_and_connection(base): edge = appsync.ObjectType(f"{base.name}Edge", definition={"node": base.attribute(), "cursor": appsync.GraphqlType.string()} ) connection = appsync.ObjectType(f"{base.name}Connection", definition={ "edges": edge.attribute(is_list=True), "pluralize(base.name)": base.attribute(is_list=True), "total_count": appsync.GraphqlType.int() } ) return {"edge": edge, "connection": connection} ``` Finally, we will go to our `cdk-stack` and combine everything together to generate our schema. ```python # dummy_request: appsync.MappingTemplate # dummy_response: appsync.MappingTemplate api = appsync.GraphqlApi(self, "Api", name="demo" ) object_types = [Node, FilmNode] film_connections = generate_edge_and_connection(FilmNode) api.add_query("allFilms", appsync.ResolvableField( return_type=film_connections.connection.attribute(), args=args, data_source=api.add_none_data_source("none"), request_mapping_template=dummy_request, response_mapping_template=dummy_response )) api.add_type(Node) api.add_type(FilmNode) api.add_type(film_connections.edge) api.add_type(film_connections.connection) ``` Notice how we can utilize the `generateEdgeAndConnection` function to generate Object Types. In the future, if we wanted to create more Object Types, we can simply create the base Object Type (i.e. Film) and from there we can generate its respective `Connections` and `Edges`. Check out a more in-depth example [here](https://github.com/BryanPan342/starwars-code-first). ## GraphQL Types One of the benefits of GraphQL is its strongly typed nature. We define the types within an object, query, mutation, interface, etc. as **GraphQL Types**. GraphQL Types are the building blocks of types, whether they are scalar, objects, interfaces, etc. GraphQL Types can be: * [**Scalar Types**](https://docs.aws.amazon.com/appsync/latest/devguide/scalars.html): Id, Int, String, AWSDate, etc. * [**Object Types**](#Object-Types): types that you generate (i.e. `demo` from the example above) * [**Interface Types**](#Interface-Types): abstract types that define the base implementation of other Intermediate Types More concretely, GraphQL Types are simply the types appended to variables. Referencing the object type `Demo` in the previous example, the GraphQL Types is `String!` and is applied to both the names `id` and `version`. ### Directives `Directives` are attached to a field or type and affect the execution of queries, mutations, and types. With AppSync, we use `Directives` to configure authorization. CDK provides static functions to add directives to your Schema. * `Directive.iam()` sets a type or field's authorization to be validated through `Iam` * `Directive.apiKey()` sets a type or field's authorization to be validated through a `Api Key` * `Directive.oidc()` sets a type or field's authorization to be validated through `OpenID Connect` * `Directive.cognito(...groups: string[])` sets a type or field's authorization to be validated through `Cognito User Pools` * `groups` the name of the cognito groups to give access To learn more about authorization and directives, read these docs [here](https://docs.aws.amazon.com/appsync/latest/devguide/security.html). ### Field and Resolvable Fields While `GraphqlType` is a base implementation for GraphQL fields, we have abstractions on top of `GraphqlType` that provide finer grain support. ### Field `Field` extends `GraphqlType` and will allow you to define arguments. [**Interface Types**](#Interface-Types) are not resolvable and this class will allow you to define arguments, but not its resolvers. For example, if we want to create the following type: ```gql type Node { test(argument: string): String } ``` The CDK code required would be: ```python field = appsync.Field( return_type=appsync.GraphqlType.string(), args={ "argument": appsync.GraphqlType.string() } ) type = appsync.InterfaceType("Node", definition={"test": field} ) ``` ### Resolvable Fields `ResolvableField` extends `Field` and will allow you to define arguments and its resolvers. [**Object Types**](#Object-Types) can have fields that resolve and perform operations on your backend. You can also create resolvable fields for object types. ```gql type Info { node(id: String): String } ``` The CDK code required would be: ```python # api: appsync.GraphqlApi # dummy_request: appsync.MappingTemplate # dummy_response: appsync.MappingTemplate info = appsync.ObjectType("Info", definition={ "node": appsync.ResolvableField( return_type=appsync.GraphqlType.string(), args={ "id": appsync.GraphqlType.string() }, data_source=api.add_none_data_source("none"), request_mapping_template=dummy_request, response_mapping_template=dummy_response ) } ) ``` To nest resolvers, we can also create top level query types that call upon other types. Building off the previous example, if we want the following graphql type definition: ```gql type Query { get(argument: string): Info } ``` The CDK code required would be: ```python # api: appsync.GraphqlApi # dummy_request: appsync.MappingTemplate # dummy_response: appsync.MappingTemplate query = appsync.ObjectType("Query", definition={ "get": appsync.ResolvableField( return_type=appsync.GraphqlType.string(), args={ "argument": appsync.GraphqlType.string() }, data_source=api.add_none_data_source("none"), request_mapping_template=dummy_request, response_mapping_template=dummy_response ) } ) ``` Learn more about fields and resolvers [here](https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-overview.html). ### Intermediate Types Intermediate Types are defined by Graphql Types and Fields. They have a set of defined fields, where each field corresponds to another type in the system. Intermediate Types will be the meat of your GraphQL Schema as they are the types defined by you. Intermediate Types include: * [**Interface Types**](#Interface-Types) * [**Object Types**](#Object-Types) * [**Enum Types**](#Enum-Types) * [**Input Types**](#Input-Types) * [**Union Types**](#Union-Types) #### Interface Types **Interface Types** are abstract types that define the implementation of other intermediate types. They are useful for eliminating duplication and can be used to generate Object Types with less work. You can create Interface Types ***externally***. ```python node = appsync.InterfaceType("Node", definition={ "id": appsync.GraphqlType.string(is_required=True) } ) ``` To learn more about **Interface Types**, read the docs [here](https://graphql.org/learn/schema/#interfaces). #### Object Types **Object Types** are types that you declare. For example, in the [code-first example](#code-first-example) the `demo` variable is an **Object Type**. **Object Types** are defined by GraphQL Types and are only usable when linked to a GraphQL Api. You can create Object Types in two ways: 1. Object Types can be created ***externally***. ```python api = appsync.GraphqlApi(self, "Api", name="demo" ) demo = appsync.ObjectType("Demo", definition={ "id": appsync.GraphqlType.string(is_required=True), "version": appsync.GraphqlType.string(is_required=True) } ) api.add_type(demo) ``` > This method allows for reusability and modularity, ideal for larger projects. > For example, imagine moving all Object Type definition outside the stack. `object-types.ts` - a file for object type definitions ```python import aws_cdk.aws_appsync as appsync demo = appsync.ObjectType("Demo", definition={ "id": appsync.GraphqlType.string(is_required=True), "version": appsync.GraphqlType.string(is_required=True) } ) ``` `cdk-stack.ts` - a file containing our cdk stack ```python # api: appsync.GraphqlApi api.add_type(demo) ``` 2. Object Types can be created ***externally*** from an Interface Type. ```python node = appsync.InterfaceType("Node", definition={ "id": appsync.GraphqlType.string(is_required=True) } ) demo = appsync.ObjectType("Demo", interface_types=[node], definition={ "version": appsync.GraphqlType.string(is_required=True) } ) ``` > This method allows for reusability and modularity, ideal for reducing code duplication. To learn more about **Object Types**, read the docs [here](https://graphql.org/learn/schema/#object-types-and-fields). #### Enum Types **Enum Types** are a special type of Intermediate Type. They restrict a particular set of allowed values for other Intermediate Types. ```gql enum Episode { NEWHOPE EMPIRE JEDI } ``` > This means that wherever we use the type Episode in our schema, we expect it to > be exactly one of NEWHOPE, EMPIRE, or JEDI. The above GraphQL Enumeration Type can be expressed in CDK as the following: ```python # api: appsync.GraphqlApi episode = appsync.EnumType("Episode", definition=["NEWHOPE", "EMPIRE", "JEDI" ] ) api.add_type(episode) ``` To learn more about **Enum Types**, read the docs [here](https://graphql.org/learn/schema/#enumeration-types). #### Input Types **Input Types** are special types of Intermediate Types. They give users an easy way to pass complex objects for top level Mutation and Queries. ```gql input Review { stars: Int! commentary: String } ``` The above GraphQL Input Type can be expressed in CDK as the following: ```python # api: appsync.GraphqlApi review = appsync.InputType("Review", definition={ "stars": appsync.GraphqlType.int(is_required=True), "commentary": appsync.GraphqlType.string() } ) api.add_type(review) ``` To learn more about **Input Types**, read the docs [here](https://graphql.org/learn/schema/#input-types). #### Union Types **Union Types** are a special type of Intermediate Type. They are similar to Interface Types, but they cannot specify any common fields between types. **Note:** the fields of a union type need to be `Object Types`. In other words, you can't create a union type out of interfaces, other unions, or inputs. ```gql union Search = Human | Droid | Starship ``` The above GraphQL Union Type encompasses the Object Types of Human, Droid and Starship. It can be expressed in CDK as the following: ```python # api: appsync.GraphqlApi string = appsync.GraphqlType.string() human = appsync.ObjectType("Human", definition={"name": string}) droid = appsync.ObjectType("Droid", definition={"name": string}) starship = appsync.ObjectType("Starship", definition={"name": string}) search = appsync.UnionType("Search", definition=[human, droid, starship] ) api.add_type(search) ``` To learn more about **Union Types**, read the docs [here](https://graphql.org/learn/schema/#union-types). ### Query Every schema requires a top level Query type. By default, the schema will look for the `Object Type` named `Query`. The top level `Query` is the **only** exposed type that users can access to perform `GET` operations on your Api. To add fields for these queries, we can simply run the `addQuery` function to add to the schema's `Query` type. ```python # api: appsync.GraphqlApi # film_connection: appsync.InterfaceType # dummy_request: appsync.MappingTemplate # dummy_response: appsync.MappingTemplate string = appsync.GraphqlType.string() int = appsync.GraphqlType.int() api.add_query("allFilms", appsync.ResolvableField( return_type=film_connection.attribute(), args={"after": string, "first": int, "before": string, "last": int}, data_source=api.add_none_data_source("none"), request_mapping_template=dummy_request, response_mapping_template=dummy_response )) ``` To learn more about top level operations, check out the docs [here](https://docs.aws.amazon.com/appsync/latest/devguide/graphql-overview.html). ### Mutation Every schema **can** have a top level Mutation type. By default, the schema will look for the `ObjectType` named `Mutation`. The top level `Mutation` Type is the only exposed type that users can access to perform `mutable` operations on your Api. To add fields for these mutations, we can simply run the `addMutation` function to add to the schema's `Mutation` type. ```python # api: appsync.GraphqlApi # film_node: appsync.ObjectType # dummy_request: appsync.MappingTemplate # dummy_response: appsync.MappingTemplate string = appsync.GraphqlType.string() int = appsync.GraphqlType.int() api.add_mutation("addFilm", appsync.ResolvableField( return_type=film_node.attribute(), args={"name": string, "film_number": int}, data_source=api.add_none_data_source("none"), request_mapping_template=dummy_request, response_mapping_template=dummy_response )) ``` To learn more about top level operations, check out the docs [here](https://docs.aws.amazon.com/appsync/latest/devguide/graphql-overview.html). ### Subscription Every schema **can** have a top level Subscription type. The top level `Subscription` Type is the only exposed type that users can access to invoke a response to a mutation. `Subscriptions` notify users when a mutation specific mutation is called. This means you can make any data source real time by specify a GraphQL Schema directive on a mutation. **Note**: The AWS AppSync client SDK automatically handles subscription connection management. To add fields for these subscriptions, we can simply run the `addSubscription` function to add to the schema's `Subscription` type. ```python # api: appsync.GraphqlApi # film: appsync.InterfaceType api.add_subscription("addedFilm", appsync.Field( return_type=film.attribute(), args={"id": appsync.GraphqlType.id(is_required=True)}, directives=[appsync.Directive.subscribe("addFilm")] )) ``` To learn more about top level operations, check out the docs [here](https://docs.aws.amazon.com/appsync/latest/devguide/real-time-data.html).


نیازمندی

مقدار نام
==1.179.0 aws-cdk.aws-certificatemanager
==1.179.0 aws-cdk.aws-cognito
==1.179.0 aws-cdk.aws-dynamodb
==1.179.0 aws-cdk.aws-ec2
==1.179.0 aws-cdk.aws-elasticsearch
==1.179.0 aws-cdk.aws-iam
==1.179.0 aws-cdk.aws-lambda
==1.179.0 aws-cdk.aws-opensearchservice
==1.179.0 aws-cdk.aws-rds
==1.179.0 aws-cdk.aws-s3-assets
==1.179.0 aws-cdk.aws-secretsmanager
==1.179.0 aws-cdk.core
<4.0.0,>=3.3.69 constructs
<2.0.0,>=1.70.0 jsii
>=0.0.3 publication
~=2.13.3 typeguard


زبان مورد نیاز

مقدار نام
~=3.7 Python


نحوه نصب


نصب پکیج whl aws-cdk.aws-appsync-1.99.0:

    pip install aws-cdk.aws-appsync-1.99.0.whl


نصب پکیج tar.gz aws-cdk.aws-appsync-1.99.0:

    pip install aws-cdk.aws-appsync-1.99.0.tar.gz